International Morse Code defines a standard encoding where each letter is mapped to a series of dots and dashes, as follows: "a" maps to ".-", "b"maps to "-...", "c" maps to "-.-.", and so on.
For convenience, the full table for the 26 letters of the English alphabet is given below:
[".-","-...","-.-.","-..",".","..-.","--.","....","..",".---","-.-",".-..","--","-.","---",".--.","--.-",".-.","...","-","..-","...-",".--","-..-","-.--","--.."]
Now, given a list of words, each word can be written as a concatenation of the Morse code of each letter. For example, “cba” can be written as “-.-..–…”, (which is the concatenation “-.-.” + “-…” + “.-“). We’ll call such a concatenation, the transformation of a word.
Return the number of different transformations among all words we have.
Example: Input: words = ["gin", "zen", "gig", "msg"] Output: 2 Explanation: The transformation of each word is: "gin" -> "--...-." "zen" -> "--...-." "gig" -> "--...--." "msg" -> "--...--." There are 2 different transformations, "--...-." and "--...--.".
Note:
- The length of wordswill be at most100.
- Each words[i]will have length in range[1, 12].
- words[i]will only consist of lowercase letters.
Python
 
class Solution(object):
    def uniqueMorseRepresentations(self, words):
        """
        :type words: List[str]
        :rtype: int
        """
        a = [".-","-...","-.-.","-..",".","..-.","--.","....","..",".---","-.-",".-..","--","-.","---",".--.","--.-",".-.","...","-","..-","...-",".--","-..-","-.--","--.."]
        d = {}
        for word in words:
            temp_key = ""
            for w in word:
                temp_key += a[ord(w)-97]
            d[temp_key] = 1
        return len(d)